Variance formula

Generally, we can write

$$Var(X_i) = E[(X_i - \mu_X)^2]$$

= $E[(X_i^2 + \mu_X^2 - 2\mu_X X_i)]$
= $E(X_i^2) + \mu_X^2 - 2\mu_X E(X_i)$
= $E(X_i^2) + \mu_X^2 - 2\mu_X^2$
= $E(X_i^2) - \mu_X^2 \equiv E(X_i^2) - E(X_i)^2$

where I denoted $E(X_i) = \mu_X$.

Variance formula

In the special case where X_i is either 0 or 1, we can write

$$Var(X_i) = E[(X_i - p)^2]$$

= $E[(X_i - p)^2 | X_i = 0] Pr(X_i = 0)$
+ $E[(X_i - p)^2 | X_i = 1] Pr(X_i = 1)$
= $(0 - p)^2 (1 - p) + (1 - p)^2 p$
= $p^2 (1 - p) + (1 - 2p + p^2) p$
= $p^2 - p^3 + p - 2p^2 + p^3 = p - p^2$.

I denoted $Pr(X_i = 1) = p$. Note that because X_i is either 0 or 1, we know that $E(X_i) = Pr(X_i = 1)$.

Variance formula

Or, you can apply the general formula from above. Note that if X_i is either 0 or 1, we know that $X_i^2 = X_i$ and thus

$$Var(X_i) = E(X_i^2) - E(X_i)^2$$

= $E(X_i) - E(X_i)^2$
= $p - p^2 = p(1 - p)$.

I again denoted $Pr(X_i = 1) = p$ in the last equality.